首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259832篇
  免费   5298篇
  国内免费   3399篇
测绘学   7156篇
大气科学   19404篇
地球物理   54414篇
地质学   90862篇
海洋学   21927篇
天文学   55632篇
综合类   1034篇
自然地理   18100篇
  2021年   2182篇
  2020年   2612篇
  2019年   2836篇
  2018年   4138篇
  2017年   3846篇
  2016年   6099篇
  2015年   4270篇
  2014年   6983篇
  2013年   14291篇
  2012年   6787篇
  2011年   8474篇
  2010年   7431篇
  2009年   10060篇
  2008年   8812篇
  2007年   8310篇
  2006年   9722篇
  2005年   7882篇
  2004年   7776篇
  2003年   7294篇
  2002年   6847篇
  2001年   6075篇
  2000年   5992篇
  1999年   5214篇
  1998年   4879篇
  1997年   4664篇
  1996年   4245篇
  1995年   4335篇
  1994年   4016篇
  1993年   3783篇
  1992年   3533篇
  1991年   3543篇
  1990年   3643篇
  1989年   3339篇
  1988年   3167篇
  1987年   3725篇
  1986年   3263篇
  1985年   4129篇
  1984年   4648篇
  1983年   4331篇
  1982年   4234篇
  1981年   3854篇
  1980年   3596篇
  1979年   3440篇
  1978年   3451篇
  1977年   3229篇
  1976年   2972篇
  1975年   2909篇
  1974年   2873篇
  1973年   3069篇
  1972年   1995篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Izvestiya, Atmospheric and Oceanic Physics - A new technique has been developed to obtain the total ozone content (TOC) under cloudy conditions from the spectra of outgoing thermal IR radiation...  相似文献   
42.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
43.
Statistical characteristics of meteoroids with kinetic energy from 0.1 to 440 kt TNT are estimated based on NASA satellite observations made in 1994–2016. The distributions of the number of falling meteoroids are constructed and analyzed based on the values of their initial kinetic energy, initial velocity, initial mass, altitude, geographic coordinates of the maximum total radiated energy region, and the year of the fall. Correlation dependences “mass–initial kinetic energy,” “maximum total radiated energy region altitude–initial kinetic energy,” and “maximum total radiated energy region altitude–initial velocity (the square of the initial velocity)” are constructed.  相似文献   
44.
This work provides a comprehensive physically based framework for the interpretation of the north Australian rainfall stable isotope record (δ18O and δ2H). Until now, interpretations mainly relied on statistical relationships between rainfall amount and isotopic values on monthly timescales. Here, we use multiseason daily rainfall stable isotope and high resolution (10 min) ground‐based C‐band polarimetric radar data and show that the five weather types (monsoon regimes) that constitute the Australian wet season each have a characteristic isotope ratio. The data suggest that this is not only due to changes in regional rainfall amount during these regimes but, more importantly, is due to different rain and cloud types that are associated with the large scale circulation regimes. Negative (positive) isotope anomalies occurred when stratiform rainfall fractions were large (small) and the horizontal extent of raining areas were largest (smallest). Intense, yet isolated, convective conditions were associated with enriched isotope values whereas more depleted isotope values were observed when convection was widespread but less intense. This means that isotopic proxy records may record the frequency of which these typical wet season regimes occur. Positive anomalies in paleoclimatic records are most likely associated with periods where continental convection dominates and convection is sea‐breeze forced. Negative anomalies may be interpreted as periods when the monsoon trough is active, convection is of the oceanic type, less electric, and stratiform areas are wide spread. This connection between variability of rainfall isotope anomalies and the intrinsic properties of convection and its large‐scale environment has important implications for all fields of research that use rainfall stable isotopes.  相似文献   
45.
46.
47.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   
48.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
49.
The objective of the present paper is to derive a set of analytical equations that describe a swing-by maneuver realized in a system of primaries that are in elliptical orbits. The goal is to calculate the variations of energy, velocity and angular momentum as a function of the usual basic parameters that describe the swing-by maneuver, as done before for the case of circular orbits. In elliptical orbits the velocity of the secondary body is no longer constant, as in the circular case, but it varies with the position of the secondary body in its orbit. As a consequence, the variations of energy, velocity and angular momentum become functions of the magnitude and the angle between the velocity vector of the secondary body and the line connecting the primaries. The “patched-conics” approach is used to obtain these equations. The configurations that result in maximum gains and losses of energy for the spacecraft are shown next, and a comparison between the results obtained using the analytical equations and numerical simulations are made to validate the method developed here.  相似文献   
50.
We investigate 1D exoplanetary distributions using a novel analysis algorithm based on the continuous wavelet transform. The analysis pipeline includes an estimation of the wavelet transform of the probability density function (p.d.f.) without pre-binning, use of optimized wavelets, a rigorous significance testing of the patterns revealed in the p.d.f., and an optimized minimum-noise reconstruction of the p.d.f. via matching pursuit iterations.In the distribution of orbital periods, \(P\), our analysis revealed a narrow subfamily of exoplanets within the broad family of “warm Jupiters”, or massive giants with \(P\gtrsim 300~\mbox{d}\), which are often deemed to be related with the iceline accumulation in a protoplanetary disk. We detected a p.d.f. pattern that represents an upturn followed by an overshooting peak spanning \(P\sim 300\mbox{--}600~\mbox{d}\), right beyond the “period valley”. It is separated from the other planets by p.d.f. concavities from both sides. It has at least 2-sigma significance.In the distribution of planet radii, \(R\), and using the California Kepler Survey sample properly cleaned, we confirm the hints of a bimodality with two peaks about \(R=1.3R_{\oplus }\) and \(R=2.4R_{ \oplus }\), and the “evaporation valley” between them. However, we obtain just a modest significance for this pattern, 2-sigma only at the best. Besides, our follow-up application of the Hartigan and Hartigan dip test for unimodality returns 3 per cent false alarm probability (merely 2.2-sigma significance), contrary to 0.14 per cent (or 3.2-sigma), as claimed by Fulton et al. (2017).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号